An Online Low-Cost System for Air Quality Monitoring, Prediction, and Warning

Abstract

Air-quality is degrading in developing countries and there is an urgent need to monitor and predict air-quality online in real-time. Although offline air-quality monitoring using hand-held devices is common, online air-quality monitoring is still expensive and uncommon, especially in developing countries. The primary objective of this paper is to propose an online low-cost air-quality monitoring, prediction, and warning system (AQMPWS) which monitors, predicts, and warns about air-quality in real-time. The AQMPWS monitors and predict seven pollutants, namely, PM1.0, PM2.5, PM10, Carbon Monoxide, Nitrogen Dioxide, Ozone and Sulphur Dioxide. In addition, the AQMPWS monitors and predicts five weather variables, namely, Temperature, Pressure, Relative Humidity, Wind Speed, and Wind Direction. The AQMPWS has its sensors connected to two microcontrollers in a Master-Slave configuration. The slave sends the data to the API in the cloud through an HTTP GET request via a GSM Module. A python-based web-application interacts with the API for visualization, prediction, and warning. Results show that the AQMPWS monitor different pollutants and weather variables within range specified by pollution control board. In addition, the AQMPWS predict the value of the pollutants and weather variables for the next 30-min given the current values of these pollutants and weather variables using an ensemble model containing a multilayer-perceptron and long short-term memory model. The AQMPWS is also able to warn stakeholders when any of the seven pollutants breach pre-defined thresholds. We discuss the implications of using AQMPWS for air-quality monitoring in the real-world.

Publication
In the 16th International Conference in Distributed Computing and Internet Technology (ICDCIT ‘20), Bhubaneswar, India, January 9th-12th, 2020
Rishi Sharma
Rishi Sharma
PhD Student at EPFL

Currently exploring research interests in Computer Science.

comments powered by Disqus