Adversarial training for blind-spot removal (HiWi Report)

Rishi Sharma

February 11, 2020

Outline

1 Adversarial Training

- 2 LSTM Network for DGA Prediction
- **3** Non-Differentiable Embedding Layer
- 4 Gradient-based Attack
- **5** Iterative Hardening
- **6** Transferring Adversaries
 - 7 Future Work

Natural saddle point (min-max) formulation

 $\min_{\theta} \rho(\theta), \text{ where } \rho(\theta) = \mathbb{E}_{(x,y) \sim D}[\max_{\delta \in S} L(\theta, x + \delta, y)]$

- θ : the parameters of the model.
- x: the input to the model.
- y: the target label of the given input.
- $S \subseteq \mathbb{R}^n$: the set of allowed perturbations.
- Two separate problems: Inner Maximization & Outer Minimization

[Towards Deep Learning Models Resistant to Adversarial Attacks (2017), Aleksander Madry et al.]

Inner Maximization

$$\max_{\delta \in S} L(\theta, x + \delta, y)]$$

- This optimization tries to generate the adversarial example from the given input.
- This optimization problem can be solved by using techniques such as Fast Gradient Sign Method and Projected Gradient Descent.
- FGSM: $x \leftarrow x + \epsilon sgn(\nabla_x L(\theta, x, y)).$
- PGD: $x^{t+1} \leftarrow \prod_{x+S} (x^t + \alpha sgn(\nabla_x L(\theta, x, y))).$

Outer Minimization $\min_{\theta} \rho(\theta)$

- This is the learning phase of the adversarial training.
- The network is trained on the dataset augmented with the adversarial examples.

Composition of the Network.

- The Embedding Layer : projects the l-length (padded) input sequence to a sequence of l vectors, each of dimension d.
- The LSTM layer : a feature extraction layer.
- Logistic Regression : predicts the probability of being malicious.

[Predicting Domain Generation Algorithms with Long Short-Term Memory Networks (2016), Endgame, Inc.]

Rishi Sharma

Separation of the Networks.

- Trained over $\sim 22k$ samples of each non-manipulated benign and malicious samples.
- 5-fold cross-validation.

-	Mean	Stddev
Acc	0.9974	0.0011
FNR	0.0014	0.0010
TNR	0.9961	0.0018
TPR	0.9986	0.0010
FPR	0.0039	0.0018

Table 1: The performance measurements of training the original network.

• This training was performed on only valid domain names. We will see this later why?

A forward pass through the network.

Problem

The Embedding Layer **selects** a vector corresponding each character in the input sequence.

- The implementations of the Embedding Layer in frameworks access the vector from a table using the character as the index.
- The layer is non-differentiable.

Problem

The Embedding Layer **selects** a vector corresponding each character in the input sequence.

- The implementations of the Embedding Layer in frameworks access the vector from a table using the character as the index.
- The layer is non-differentiable.

• Two solutions.

128 dimensional vector for each character of the input sequence

The Embedding Network.

Emulate Embedding Layer

Use 1D Convolution filters to learn a vector representation of the input sequence elements.

- A very simple network.
- Each Convolution filter learn to predict one of the dimensions of the vector representation.
- This embedding layer is differentiable!

Emulate Embedding Layer

Use 1D Convolution filters to learn a vector representation of the input sequence elements.

- A very simple network.
- Each Convolution filter learn to predict one of the dimensions of the vector representation.
- This embedding layer is differentiable!
- *Con* : The accuracy fell down awfully on training the complete network in one pass.

Emulate Embedding Layer

Use 1D Convolution filters to learn a vector representation of the input sequence elements.

-	Mean	Stddev
Acc	0.9244	0.0388
FNR	0.0329	0.0433
TNR	0.8890	0.0367
TPR	0.9671	0.0433
FPR	0.1109	0.0367

Table 2: Performance while training the network with emulated layer.

Invert Embedding Layer

Use a network to get the input sequence back from the embeddings.

- How does that help us?
- This won't let gradients flow back to the input sequence.
- Let us see how...

A forward pass through the network.

Training the inverting network

inputs : Output of the Keras embedding layer.

label : The input sequence.

Trained similar to an autoencoder.

Input domain	Inverted domain
amazon.co.de	amazon.co.de
this-is-it-security.rwth	this-is-it-security.rwth
google.com	google.com
gst.gov.in	gst.gov.in
apple.com	apple.com

Table 3: Evaluation of the inverting network.

FGSM attack

 $x \leftarrow x + \epsilon sgn(\nabla_x L(\theta, x, y))$

FGSM attack

$$x \leftarrow x + \epsilon sgn(\nabla_x L(\theta, x, y))$$

Keep attacking till probability drops below 10% or max-epochs reached.

Generated adversarial samples

-9.z07?*hvd].a !n !f7=s*1d/.; jf];;g;;0?2;

- *Problem* : None of the adversarial domains are valid.
- *Catch* : The benign dataset was unfiltered.

- *Problem* : None of the adversarial domains are valid.
- *Catch* : The benign dataset was unfiltered.
- Solution : Remove invalid domains from the dataset. Retrain.

Valid generated adversarial samples
rjqqyq4q.net
9cbq48qq.space
wt34h8o0.space
qqqqqqq.net

- *Catch* : Keep the top-level domain unchanged.
- Too much change? : $x \leftarrow x + \epsilon \nabla_x L(\theta, x, y)$
- Time/epoch : 0.7092s

The algorithm

- Train the network.
- Inner Maximization : Generate adversarial samples.
- Augment the training set with the adversarial samples.
- Outer Minimization : Retrain.

The algorithm

- Train the network.
- Inner Maximization : Generate adversarial samples.
- Augment the training set with the adversarial samples.
- Outer Minimization : Retrain.
- *Expectation* : If it all works well, FGSM should generate **actually** benign samples.

Remember to freeze the embedding network after the first iteration.

Results

057754af.space

[99.7%]

Results

Results

Results

Rishi Sharma

Results

Rishi Sharma

Results

Analysis

- Vector Representation : $-0.07421777 \ 0.05503434 \ 0.10850348 \ ...$
- Mean L2 Distance : 5.89923604974
- Baseline Prediction : qqqqqqqq.space [99.8%]

Rishi Sharma

The algorithm

- Train the complete network.
- Create a dataset with vector representations.
- Inner Maximization : Generate adversarial vector representations.
- Augment the dataset with the adversarial samples.
- *Outer Minimization* : Retrain only the LSTM Network with this dataset.
- *Expectation* : If it all works well, FGSM should generate **actually** benign samples.

Iterative Hardening over vector representations

Iterative Hardening over vector representations

Results

• Average Epochs per Attack : Increases on each iteration

• Harder to find adversaries.

Rishi Sharma

IT Security

February 11, 2020 40 / 46

Why gradient based attacks don't work?

- The Embedding Layer **selects** a vector corresponding each character in the input sequence.
- *Discrete* : A character can be represented by a unique vector in the high dimensional space.
- The gradient based attack makes a continuous change in the direction of gradient.
- *Iterative Training in the character space* : Mapping the continuous change to discrete levels can disrupt the attack.
- *Iterative Training in the vector space* : The adversarial vector will never be generated by the embedding network. No useful learning.

Mike Lorang, in his Master Thesis used transferred adversaries from a network without embedding layer to one with embedding layer.

-	Baseline	CharIterH	VectorIterH
Acc	0.9427	0.9739	0.9010
FNR	0.0573	0.0260	0.0989

Table 4: Evaluation against Transferred FGSM (LSTM).

-	Baseline	CharIterH	VectorIterH
Acc	0.9993	0.9879	0.9538
FNR	0.0007	0.0121	0.0462

Table 5: Evaluation against Transferred FGSM (CNN).

Transferring Adversaries

-	Baseline	CharIterH	VectorIterH
Acc	0.7050	0.8860	0.7650
FNR	0.2950	0.1140	0.2350

Table 6: Evaluation against Hotflip Adversaries (LSTM).

-	Baseline	CharIterH	VectorIterH
Acc	0.5696	0.7264	0.4629
FNR	0.4303	0.2735	0.5370

Table 7: Evaluation against Hotflip Adversaries (CNN).

-	Baseline	CharIterH	VectorIterH
Acc	0.4667	0.6000	0.4667
FNR	0.5333	0.4000	0.5333

Table 8: Evaluation against SeqGAN Adversaries (Very few samples).

Benign	Hotflip (CNN)
195.126.129.124.in-addr.arpa	wli-hcgde
zjekmjf.germanistik.rwth-aachen.de	z0n-e8tzmz7mrbybe
ejgvgxp.ad.fh-aachen.de	5jkat2oz5gz8ei2.name
fe-prg007.nos-avg.cz	zt-sf-lm.at

SeqGAN	Hotflip (LSTM)
qbutbtwbswul7a6anl.laanwh.ad	9-qqeidkufm28qd9j1.fr
e0 ehl 136 oe sqe.s fp speeld.a. th	9tnl777ld53b758.org
qbutbtwbswul7a6anl.laanwh.ad	e0dbmmgsm2-uav1jp
o21pfr2o.e.s.hn	bwh3pku3qm9e7.nz

Table 9: Benign and adversarial domain names.

Future Work

Flow gradients to the inputs without accuracy loss

- Train the original network.
- Generate embeddings
- Train the emulated embedding layer with the generated embeddings as labels.
- Improved the Emulated Embedding Layer?

Projection of adversarial vector representation

- Generate adversarial vector representations.
- Calculate distance of the adversarial vectors to all possible embedding vectors. (L2 Distance)
- Choose the corresponding nearest embedding vectors.
- Projection from continuous to discrete space.

Adversarial examples for discrete data / text

- SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient (2017), Lantao Yu et al.
- HotFlip: White-Box Adversarial Examples for Text Classification (2018), Javid Ebrahimi et al.

Try other attacks for discrete data.