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Adversarial Training

Natural saddle point (min-max) formulation

min p(0), where p(0) = E(, D [I?eaé“ L0,z +9,y)]

@ 0 : the parameters of the model.

@ x : the input to the model.

@ y : the target label of the given input.

o S CR™: the set of allowed perturbations.

e Two separate problems: Inner Maximization & Outer
Minimization

[Towards Deep Learning Models Resistant to Adversarial Attacks
(2017), Aleksander Madry et al.]
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Adversarial Training

Inner Maximization

L
max L(6, & + 0, y))

e This optimization tries to generate the adversarial example from
the given input.

@ This optimization problem can be solved by using techniques such
as Fast Gradient Sign Method and Projected Gradient Descent.

o FGSM: z + x + esgn(V,L(0, z,y)).
o PGD: 2!t < II g(at + asgn(V,L(0,z,y))).
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Adversarial Training

Outer Minimization

min p(0)

@ This is the learning phase of the adversarial training.

@ The network is trained on the dataset augmented with the
adversarial examples.
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The Network

input sequence

Embedding Layer

¥

LSTM Layer

¥

Logistic Regression

output probability

Composition of the Network.

@ The Embedding Layer : projects the I-length (padded) input
sequence to a sequence of [ vectors, each of dimension d.

@ The LSTM layer : a feature extraction layer.

e Logistic Regression : predicts the probability of being malicious.

[Predicting Domain Generation Algorithms with Long Short-Term
Memory Networks (2016), Endgame, Inc.]
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The Network
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Separation of the Networks.

e Trained over ~ 22k samples of each non-manipulated benign and

malicious samples.

@ 5-fold cross-validation.
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The Network

- Mean | Stddev
Acc || 0.9974 | 0.0011
FNR || 0.0014 | 0.0010
TNR || 0.9961 | 0.0018
TPR || 0.9986 | 0.0010
FPR || 0.0039 | 0.0018

Table 1: The performance measurements of training the original network.

@ This training was performed on only valid domain names. We will
see this later why?
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Non-Differentiable Embedding Layer
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A forward pass through the network.
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Non-Differentiable Embedding Layer

Problem

The Embedding Layer selects a vector corresponding each character in
the input sequence.

@ The implementations of the Embedding Layer in frameworks
access the vector from a table using the character as the index.

@ The layer is non-differentiable.
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Non-Differentiable Embedding Layer

Problem

The Embedding Layer selects a vector corresponding each character in
the input sequence.

e The implementations of the Embedding Layer in frameworks
access the vector from a table using the character as the index.

@ The layer is non-differentiable.

@ T'wo solutions.
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Non-Differentiable Embedding Layer
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The Embedding Network.
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Non-Differentiable Embedding Layer

Emulate Embedding Layer

Use 1D Convolution filters to learn a vector representation of the input
sequence elements.

e A very simple network.

e Each Convolution filter learn to predict one of the dimensions of
the vector representation.

e This embedding layer is differentiable!
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Non-Differentiable Embedding Layer

Emulate Embedding Layer

Use 1D Convolution filters to learn a vector representation of the input
sequence elements.

@ A very simple network.

e Each Convolution filter learn to predict one of the dimensions of
the vector representation.

e This embedding layer is differentiable!

@ Con : The accuracy fell down awfully on training the complete
network in one pass.
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Non-Differentiable Embedding Layer

Emulate Embedding Layer

Use 1D Convolution filters to learn a vector representation of the input
sequence elements.

- Mean | Stddev
Acc || 0.9244 | 0.0388
FNR || 0.0329 | 0.0433
TNR || 0.8890 | 0.0367
TPR || 0.9671 | 0.0433
FPR | 0.1109 | 0.0367

Table 2: Performance while training the network with emulated layer.
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Non-Differentiable Embedding Layer

Invert Embedding Layer
Use a network to get the input sequence back from the embeddings.

e How does that help us?

e This won’t let gradients flow back to the input sequence.

@ Let us see how...

Rishi Sharma IT Security February 11, 2020 17 /46



Non-Differentiable Embedding Layer
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A forward pass through the network.
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Non-Differentiable Embedding Layer
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Non-Differentiable Embedding Layer
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Non-Differentiable Embedding Layer

Training the inverting network

mmputs :

label : The input sequence.
Trained similar to an autoencoder.

Output of the Keras embedding layer.

Input domain

Inverted domain

amazon.co.de
this-is-it-security.rwth
google.com
gst.gov.in
apple.com

amazon.co.de
this-is-it-security.rwth
google.com
gst.gov.in
apple.com

Table 3: Evaluation of the inverting network.
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Gradient-based Attack

x4 x+esgn(VoL(0,x,y))
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Gradient-based Attack

x < x+esgn(V,L(0,z,y))
Keep attacking till probability drops below 10% or max-epochs reached.

Generated adversarial samples

-9.207%*hvd/.a
In IfT=s*1d/.;
jf/;;g;;O?Q;

@ Problem : None of the adversarial domains are valid.

@ Catch : The benign dataset was unfiltered.
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FGSM attack

@ Problem : None of the adversarial domains are valid.
@ Catch : The benign dataset was unfiltered.

@ Solution : Remove invalid domains from the dataset. Retrain.

Valid generated adversarial samples

749y q4q.-net
9cbq48qq.space

wt34h800.space
499999q9q.net

o Catch : Keep the top-level domain unchanged.
e Too much change? : x < x+ eV, L(0,x,y)
e Time/epoch : 0.7092s
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Iterative Hardening

The algorithm

@ Train the network.

e Inner Maximization : Generate adversarial samples.
@ Augment the training set with the adversarial samples.

o Quter Minimization : Retrain.
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Iterative Hardening
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Iterative Hardening
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Iterative Hardening
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Iterative Hardening

adversarial

example )
input sequence Inverting
— { Network
\
' ; ry
[ Embedding 1
' Network ~
. b . FGSM
N e mmmemmeemmm, e, - ——— - ‘*‘ Attack
Gradient |
1. Train flow ' 1. FGSM
'
T CEssEEEEEEEEEEEEEEs L] ‘.’
] ] #
[ LSTM L."
! Network ﬁ‘
] LI Y
] I *
I el Ll *
\
— 1
output probability g = - - - =~ ’
* %
Loss— = = _ _ - - D

Rishi Sharma IT Security February 11, 2020 29 / 46



Iterative Hardening
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Iterative Hardening

The algorithm

@ Train the network.

e Inner Maximization : Generate adversarial samples.

@ Augment the training set with the adversarial samples.
o Quter Minimization : Retrain.

@ Fzxpectation : If it all works well, FGSM should generate actually
benign samples.

Remember to freeze the embedding network after the first iteration.

Rishi Sharma IT Security February 11, 2020 31 /46



Iterative Hardening

057754af space

[99.7%]
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Iterative Hardening
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Iterative Hardening

Results
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Iterative Hardening

Results
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Iterative Hardening
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Iterative Hardening
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| \

Analysis
@ Vector Representation : —0.07421777 0.05503434 0.10850348 ...
@ Mean L2 Distance : 5.89923604974

e Baseline Prediction : qqqqqqqq.space [99.8%]
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Iterative Hardening over vector representations

The algorithm

Train the complete network.

Create a dataset with vector representations.

Inner Maximization : Generate adversarial vector representations.

Augment the dataset with the adversarial samples.

Outer Minimization : Retrain only the LSTM Network with this

dataset.

Ezxpectation : If it all works well, FGSM should generate actually

benign samples.
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Iterative Hardening over vector representations
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Iterative Hardening over vector representations
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o Awerage Epochs per Attack : Increases on each iteration

@ Harder to find adversaries.
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Iterative Hardening

Why gradient based attacks don’t work?

The Embedding Layer selects a vector corresponding each
character in the input sequence.

Discrete : A character can be represented by a unique vector in
the high dimensional space.

The gradient based attack makes a continuous change in the
direction of gradient.

Iterative Training in the character space : Mapping the continuous
change to discrete levels can disrupt the attack.

Iterative Training in the vector space : The adversarial vector will
never be generated by the embedding network. No useful learning.
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Transferring Adversaries

Mike Lorang, in his Master Thesis used transferred adversaries from a
network without embedding layer to one with embedding layer. J

- Baseline | CharlterH | VectorlterH
Acc 0.9427 0.9739 0.9010
FNR 0.0573 0.0260 0.0989

Table 4: Evaluation against Transferred FGSM (LSTM).

- Baseline | CharlterH | VectorlterH
Acc 0.9993 0.9879 0.9538
FNR 0.0007 0.0121 0.0462

Table 5: Evaluation against Transferred FGSM (CNN).
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Transferring Adversaries

- Baseline | CharlterH | VectorlterH
Acc 0.7050 0.8860 0.7650
FNR 0.2950 0.1140 0.2350

Table 6: Evaluation against Hotflip Adversaries (LSTM).

- Baseline | CharlterH | VectorlterH
Acc 0.5696 0.7264 0.4629
FNR 0.4303 0.2735 0.5370

Table 7: Evaluation against Hotflip Adversaries (CNN).

- Baseline | CharlterH | VectorlterH
Acc 0.4667 0.6000 0.4667
FNR 0.5333 0.4000 0.5333

Table 8: Evaluation against SeqGAN Adversaries (Very few samples).
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Transferring Adversaries

Benign Hotflip (CNN)
195.126.129.124.in-addr.arpa wli-hcg-.de
zjekmjf.germanistik.rwth-aachen.de || zOn-e8tzmz7mrby-.be
ejgvgxp.ad.fh-aachen.de bjkat20zbgz8ei2.name
fe-prg007.nos-avg.cz zt-sf-lm.at
SeqGAN Hotflip (LSTM)

gbutbtwbswul7a6anl.laanwh.ad || 9-qqeidkufm28qd9jl.fr
eOehl1360esqe.sfpspeeld.a.th 9tnl7771d53b758.0rg

gbutbtwbswul7a6anl.laanwh.ad || e0Odbmmgsm2-uavl-.jp
021pfr2o.e.s.hn bwh3pku3qm9e7.nz

Table 9: Benign and adversarial domain names.
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Flow gradients to the inputs without accuracy loss

@ Train the original network.
@ Generate embeddings

@ Train the emulated embedding layer with the generated
embeddings as labels.

@ Improved the Emulated Embedding Layer?

| \

Projection of adversarial vector representation
@ Generate adversarial vector representations.

e Calculate distance of the adversarial vectors to all possible
embedding vectors. (L2 Distance)

@ Choose the corresponding nearest embedding vectors.

@ Projection from continuous to discrete space.
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Adversarial examples for discrete data / text

@ SeqGAN: Sequence Generative Adversarial Nets with Policy
Gradient (2017), Lantao Yu et al.

@ HotFlip: White-Box Adversarial Examples for Text Classification
(2018), Javid Ebrahimi et al.

Try other attacks for discrete data.
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