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ABSTRACT

With the advent of multi-core systems, GPUs and FPGAs, loop
parallelization has become a promising way to speed-up program
execution. Correspondingly, researchers have developed techniques
to parallelize loops that do not carry dependences across iterations,
and/or call pure functions. However, in languages such as Java
with managed runtimes, it is practically infeasible to perform com-
plex dependence analysis during JIT compilation. In this paper, we
propose ZS3, a first of its kind loop parallelizer for Java programs
that marks parallelizable loops for heterogeneous architectures
using TornadoVM (a Graal-based VM that supports insertion of
@Parallel constructs for loop parallelization).

ZS3 statically performs dependence and purity analysis of Java
programs in the Soot framework, to generate constraints under
which a given loop can be parallelized. These constraints are fed
to the Z3 theorem prover (which we have integrated with Soot)
to annotate parallelizable loops with the @Parallel construct. We
have also added runtime support in TornadoVM to use static anal-
ysis results for loop parallelization. Our evaluation over standard
parallelization kernels shows that ZS3 correctly parallelizes 61.3%
of manually parallelizable loops, with an efficient static analysis and
a near-zero runtime overhead. ZS3 is not only the first tool that per-
forms program-analysis based parallelization for a real-world JVM,
but also the first to integrate Z3 with Soot for loop parallelization.
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1 INTRODUCTION

With the onset of multicore and heterogeneous systems over the last
two decades, several programming languages were enriched with
various ways to write concurrent programs that take advantage of
the available hardware. Few languages provide built-in facilities to
fork and launch multiple threads, whereas others support writing
concurrent programs with extensions or libraries. At program level,
writing complex computations invariably involves iterating over
large data sets in loops. However, languages such as Java, though
provide an built-in ability to write multithreaded programs, do not
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1 int elem_sq(int x) { return x*x; }

2 int array_sq(int[] x) {

3 for (int i = 0; i < x.length; i++) {

4 int t = elem_sq(x[i]);

5 x[i] = t; }

6 return x; }

Figure 1: A Java code snippet to demonstrate the analyses

required for loop parallelization.

allow the programmer to directly mark loops for parallelization.
One of the useful developments in this space has been the design
of TornadoVM [9].

TornadoVM is a Java virtual machine (JVM) that extends Open-
JDK and GraalVM [11] with a facility to parallelize for loops across
heterogeneous architectures. It allows programmers to annotate
for loops in Java source code with an @Parallel construct, pre-
serves the annotations in Java bytecode, and then parallelizes the
marked loops on the available hardware (CPUs, GPUs, FPGAs) in
the virtual machine. This not only alleviates the need to write differ-
ent parallelization back-ends for different architectural components,
but also enriches Java with a facility to express parallelization op-
portunities at loop-level. However, identifying which loops can be
parallelized is a non-trivial problem and involves sophisticated pro-
gram analyses for even trivial programs (those involving accesses
to arrays with indices being affine functions of loop variables).

As an example, consider the Java code snippet shown in Figure 1.
In order to determine if the for loop in function array_sq can be
parallelized without changing the semantics of the program, we
need to (i) extract the array indices at statements 4 and 5; (ii) find
out if the indices may access the same location in a conflicting
manner across iterations; and (iii) check if the call to the function
elem_sq may cause any side-effect. This translates to performing
dependence analysis to find constraints under which a loop can
be parallelized, solving the identified constraints (possibly using a
constraint solver), pointer analysis to identify aliases and to resolve
method calls, and an interprocedural purity analysis. However,
performingmultiple such precise interprocedural analyses in a JVM,
where the program-analysis time directly affects the execution time
of a program, is prohibitively expensive. In this paper, we present
a tool named ZS3 that addresses all the challenges listed above:
it performs precise analysis of Java bytecode and marks loops for
parallelization, with negligible overhead during program execution.

ZS3 first performs dependence analysis over Java programs, in
the Soot framework [23]. The dependence analysis generates con-
straints (over iteration variables) under which a given candidate
loop can be parallelized. ZS3 then feeds these constraints to the
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Z3 [8] theorem prover (which we have integrated with Soot), to
determine if the constraints are satisfiable. In case the loop addi-
tionally makes some function calls, ZS3 also analyzes the called
function(s) for purity. Finally, if there are no dependences found
by Z3, and if the loop does not call any impure functions, then the
given loop can be marked for parallelization. Inspired by the PYE
framework [22] (which proposes ways to interface analyses across
static and JIT compilers), ZS3 stores and conveys information about
such parallelizable loops to our modified TornadoVM, which finally
uses ZS3-results to parallelize the identified loops.

The key contribution of our approach is to enable complex
dependence- and purity-analysis based loop parallelization for a
VM, without spending much time in the VM. To evaluate the effi-
cacy of this approach, we compared the precision of ZS3-identified
parallelization opportunities with manually marked loops, for 14
benchmarks from a Java version of the PolyBench suite [18]. We
found that ZS3 successfully marks 61.3% of parallelizable loops, and
even identifies few loops that were not identified manually. We
also measured the speed-ups achieved due to ZS3-identified parallel
loops, and found that it is significant (1.77x, on average). In order
to evaluate the trade-off between storing additional static-analysis
results and performing expensive analyses in the VM, we computed
the space overhead of our result files and the analysis time spent
in Soot+Z3. The results show that ZS3 enables loop paralleliza-
tion with a small storage overhead (10.2% of class files), negligible
run-time overhead (2.85% of the execution-time of benchmarks),
and that performing those analyses in the VM would have been
prohibitively expensive (57.58% of the total execution-time itself).

To the best of our knowledge, ZS3 is not only the first tool that
performs program-analysis based parallelization for a real-world
JVM, but is also the first to integrate Soot with Z3 for loop paral-
lelization. The purity analysis on its own is a Soot enhancement for
recent Java versions and is usable as an add-on by other analyses
and frameworks. Additionally, the idea of carrying static-analysis
results to a Java runtime in itself is novel and presents interest-
ing engineering challenges. This manuscript reflects that adapting
existing techniques that involve multiple analyses and tools to a
static+VM landscape is not easy. Hence, throughout the presenta-
tion we traverses through our exploration of the design space, and
describes our solutions therein. Also, though the demonstrated tar-
get is TornadoVM, our techniques are general enough to be applied
to any Java runtime that supports running parallel loops, and are
adaptable to other similar languages such as C#.

2 OUR APPROACH: ZS3

Figure 2 shows how ZS3 identifies parallelizable loops and conveys
this information to TornadoVM. Given Java bytecode, ZS3 first iden-
tifies canonical for loops (candidates for parallelization) and then
performs dependence analysis over the loop bodies, along with
purity analysis over called functions. The dependence constraints
are fed to the Z3 theorem prover, which helps in classifying which
loops can be parallelized without changing the underlying seman-
tics. Finally, ZS3 generates annotations that can be supplied to the
TornadoVM runtime and adds support to the VM (see Section 3) to
parallelize loops identified by our static analysis during execution.

2.1 Identifying Canonical Loops

Java code is first compiled to Java bytecode which then runs on
the JVM. Soot accepts this bytecode as input and converts it into
Jimple. However, Java bytecode and Jimple do not have syntactic
constructs like for loops. Figure 3 shows a simple for loop that
doubles array elements in Jimple representation. As can be observed,
identifying the loop, iteration variable, lower-bound, upper-bound,
and increment poses a challenge in the Jimple representation.

To match the kinds of loops supported by TornadoVM, we first
identify canonical for loops having the properties: (a) constant
lower bound; (b) private iteration variable; (c) linear, positive and
constant increment to the iteration variable; (d) condition of the
form 𝑖{< | ≤ | > | ≥}𝑢, (e) as canonical loops, (f) iteration variable
only modified in the update statement, and (g) single exit.

2.2 Variable Scoping

Local and non-local variables need to be handled separately for
dependence analysis. In a parallel runtime, variables in the loop
that are locally scoped are private and allocated on the stack of the
running thread. On the other hand, non-local variables are shared
across threads. Therefore, we must be able to differentiate local
variables from their non-local counterparts. Java bytecode, however,
does not contain any information about variable scopes.

Scoping information can be derived indirectly from the local
variable table in the bytecode, if the source code is compiled with
the -g flag. For each variable in the function, the local-variable-table
entry in the class file contains the bytecode index of its initialization,
its size, and the length in bytes forwhich it stays live.We directly use
ASM (the front-end used by Soot) to read the class file and return the
local-variable-table entry corresponding to each variable. Here, a
variable is local to a loop if and only if its bytecode index and length
are within the bounds of the bytecode indices of the initialization
and update statements. Additionally, Jimple’s temporary variables
prefixed with a $ are always considered local to the loop. For each
canonical loop, we store the set of local variables in a list localVars.

2.3 Dependence Analysis: Scalars and Fields

Being able to discriminate between local and non-local variables in
the loop, along with the fact that local variables can be accommo-
dated on the thread’s local stack on parallelization, helps parallelize
more loops when compared to the conservative case. Figure 4a
shows a loop writing to a local as well as a non-local variable.
As the variable c at line 4 can be allocated on the local stack of
the thread on parallelization, the iterations of the loop running in
parallel will be writing to different memory locations. Therefore,
this would not constitute a dependence. On the other hand, as the
variable a is declared outside the loop, each iteration of the loop
running in parallel would write to the same location. Therefore, this
would indeed constitute a write-after-write (WAW) dependence.
Assuming that we omit line 5 from the code, we can parallelize the
loop because it would not contain any dependence. But even in
this case, if we were not able to discriminate between the scopes of
variables, we would not parallelize the loop. Also note that object
fields can be considered special non-local variables.

To identify dependence for scalar variables and object fields, we
need to check for writes to variables inside the loop. There would
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Figure 2: Architecture of ZS3.

1 label1: if l2 >= 5 goto label2;

2 $stack7 = $stack3[l2];

3 $stack5 = $stack3[l2];

4 $stack6 = 2.0F * $stack5;

5 $stack8 = $stack7 + $stack6;

6 $stack3[l2] = $stack8;

7 l2 = l2 + 1;

8 goto label1;

9 label2: return;

Figure 3: Jimple representation of a simple for loop.

be a WAW dependence every time a non-local variable or an object
field is written-to inside the loop. Specifically, for each definition
in the given loop, we check if a field reference is being written
to. If yes, the loop is rejected for parallelization, else the variable
being written to is looked up in 𝑙𝑜𝑐𝑎𝑙𝑉𝑎𝑟𝑠 . If it is not found, ZS3
has identified a dependence and the loop is not parallelized. If no
such dependence is detected after processing all the statements, the
loop is passed on to the next module.

2.4 Dependence Analysis: Array References

In order to safely mark a loop as parallelizable, for each write to an
element of an array, it is crucial to ensure that the same element is
not accessed (either read or written) in any other iteration of the
loop. Analyzing array references for dependence is difficult because
the runtime values of the array indices are not available during
static analysis. We propose to formulate this dependence analysis
as a satisfiability problem. The Z3 Theorem Prover can solve the
satisfiability problem if given a set of constraints, and returns a
satisfying assignment, if it exists. Hence, we generate constraints
based on program logic, loop iteration variable and array indices,
and feed them to Z3. We pose the satisfiability problem as follows:
“Is there a satisfying assignment for the program variables under the
given constraints, such that the indices of the array references can
be the same for two different iterations of the loop?” To make the

array references easier to work with, we separate them into three
sets, namely arReads (set of array-read references), arWrites (set
of array-write references) and arRefs (arWrites ∪ arReads). The
dependence analysis for arrays is then done in three phases: (i) alias
analysis; (ii) constraint generation; and (iii) invoking Z3.

Only those references that point to the same array object can
have a mutual dependence. Therefore, alias analysis is crucial for
the precision of the dependence analysis. We generate constraints
for pairs of elements from arWrites and arRefs if and only if their
array objects alias. To identify aliases we use the GeomPTA and
Spark pointer analyses provided by the Soot framework.

To identify if there is a dependence between a given pair of alias-
ing array references, the array reference indices over two different
iterations must not be the same. However, this would be meaning-
less without capturing the program states in logic: each variable
may be assigned results from complex computations. Considering
all these factors, we now describe how do we generate the set of
constraints; see Algorithm 1. Note that we limit the types of values
on the right-hand side of the assignment statements that occur in
the def-use chain of the indices to IntConstant, Local, JAddExpr,
JMulExpr, and JSubExpr, denoting common integer-arithmetic ex-
pressions for forming indices in parallel programs. From now on,
we use 𝑜𝑝 ∈ {+, −, ∗} to represent a supported operator.

The procedure LoopC generates the set of array dependence
constraints for each pair of elements from arWrites and arRefs
in a given loop 𝑙 , and the set of iteration variables, lower bounds
and upper bounds of all the loops of the function 𝑖𝑡𝑒𝑟𝑉𝑠 , 𝑙𝑏𝑠 and
𝑢𝑏𝑠 , respectively. The constraints are encoded such that if the set
of constraints is satisfiable, there is a dependence. The procedure N
returns a mapping from the set of program variables to a set of
logical variables. If a variable 𝑦 is non-local to the loop, there is
an identity mapping. If the variable is local to the loop, 𝑦𝑖 denotes
the logical variable for the program variable 𝑦 in the 𝑖𝑡ℎ iteration.
The procedure StmtC recursively generates the constraints for
the program logic, starting at a given statement. If the value of
the variable comes from a parameter, we stop and return identity
constraint 𝑡𝑟𝑢𝑒 . If the variable is the iteration variable of another
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1 public void f(int n) {

2 int a = 0;

3 for (int i=0; i<n; i++) {

4 int c = i;

5 a = i * 2; ...

6 } }

(a)

1 public void g(int ar[]) {

2 for (int i = 0; i < 10000; i++) {

3 int k1 = f1(i);

4 int k2 = f2(i,k1);

5 int k3 = f3(i,k2);

6 ar[k3] = k2; } }

(b)

1 void h(float[] output,int rows,int cols) {

2 for (int i = 0; i < rows; i++) {

3 for (int j = 0; j < cols; j++) {

4 output[i*rows+j] = 1.0/((i+1)+(j+1)-1);

5 }

6 } }

(c)

Figure 4: Examples. (a) A loop containing a write to a local variable c and to a non-local variable a. (b) A loop containing an

array write. (c) Code for Hilbert computation showing a currently unparallelizable loop.

(nested) loop, we constrain it to its lower-bound and upper bound.
Lines 13-14 suggest that if the value assigned is an integer constant,
the variable should be constrained to that integer value. Finally,
lines 15-18 recursively generate the constraints for the operands
on the right hand side. Procedure DepC generates the constraints
for a given pair of elements from the sets arWrites and arRefs.
Lines 22-23 enforce separate iterations and that the indices of the
references be equal for a dependence. This procedure is called from
the procedure LoopC, which generates the entire constraint set by
taking the disjunction of the dependence constraints for each pair
of𝑤 ∈ arWrites and 𝑟 ∈ arRefs. In the absence of the value of a
variable during static analysis, the constraints would be weaker,
and hence, easier to satisfy. Therefore, ZS3 takes a conservative
approach in the absence of surety, thus maintaining soundness.

Figure 4b shows a simple loop given for dependence analysis.
k1, k2 and k3 are locally-scoped, and f1, f2 and f3 can be one of
the supported operators as mentioned above. Equation 1 shows the
constraints generated for the array reference at line 6 with itself,
for two separate iterations represented by the superscript:
(𝑘3𝑢 == 𝑓 3(𝑖𝑢 , 𝑘2𝑢 ) ) ∧ (𝑘2𝑢 == 𝑓 2(𝑖𝑢 , 𝑘1𝑢 ) )∧

(𝑘1𝑢 == 𝑓 1(𝑖𝑢 ) ) ∧ (𝑖𝑢 ≥ 0) ∧ (𝑖𝑢 < 10000)∧
(𝑘3𝑣 == 𝑓 3(𝑖𝑣, 𝑘2𝑣 ) ) ∧ (𝑘2𝑣 == 𝑓 2(𝑖𝑣, 𝑘1𝑣 ) )∧
(𝑘1𝑣 == 𝑓 1(𝑖𝑣 ) ) ∧ (𝑖𝑣 ≥ 0) ∧ (𝑖𝑣 < 10000)∧

(𝑖𝑢 ≠ 𝑖𝑣 ) ∧ (𝑘3𝑢 == 𝑘3𝑣 ) (1)

The generated constraints are passed to the Z3 𝑆𝑜𝑙𝑣𝑒𝑟 . If the
𝑆𝑜𝑙𝑣𝑒𝑟 returns 𝑆𝑡𝑎𝑡𝑢𝑠.𝑈𝑁𝑆𝐴𝑇𝐼𝑆𝐹𝐼𝐴𝐵𝐿𝐸, the indices in the array
references cannot be equal in different iterations, thus deeming that
the loop is free of dependencies and can be parallelized. Otherwise,
the 𝑆𝑜𝑙𝑣𝑒𝑟 was able to satisfy the constraints and the loop contains
some dependence; the loop is not parallelizable in such a case.

2.5 Including Calls to Pure Functions

While dependences caused by scalars, fields and array references
inside the loop body are taken care of by the analyses presented in
preceding sections, analyzing function invocations inside loops is
not straightforward. Such an analysis requires checking the vari-
ables and references in the invoked functions for dependences in
context of the loop, in some sense, extending the above-mentioned
analyses to external functions. This problem can be solved by check-
ing if the function has references to non-local objects, i.e. if the
function is pure [3], since purity will ensure that there are no de-
pendences among different iterations of the loop, thus enabling the
parallelization of loops containing function calls.

Algorithm 1 Algorithm to generate constraints.
1: procedure N(𝑦, 𝑖)
2: if 𝑦 ∈ 𝑙𝑜𝑐𝑎𝑙𝑉𝑎𝑟𝑠 then

3: Return 𝑦𝑖 ⊲ 𝑦 in iteration 𝑖
4: Return 𝑦

5: procedure stmtC(𝑠, 𝑖, 𝑖𝑡𝑒𝑟𝑉𝑠, 𝑙𝑏𝑠, 𝑢𝑏𝑠, 𝑙 )
6: if 𝑠 is 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦𝑆𝑡𝑚𝑡 then ⊲ The values come from Parameters
7: Return 𝑡𝑟𝑢𝑒
8: else if 𝑠 : 𝑦 ← (...) 𝐴𝑁𝐷 𝑦 ∈ 𝑖𝑡𝑒𝑟𝑉𝑠 then ⊲ Other loop’s 𝑖𝑡𝑒𝑟
9: 𝑙𝑏𝐶𝑢𝑟 ← 𝑁 (𝑦, 𝑖 ) ≥ 𝑙𝑏𝑠 [𝑦 ]
10: 𝑢𝑏𝐶𝑢𝑟 ← 𝑁 (𝑦, 𝑖 ) < 𝑁 (𝑢𝑏𝑠 [𝑦 ], 𝑖 )
11: 𝑐𝑈 ← ∨

𝑑∈𝐷𝑒𝑓 (𝑢𝑏𝑠 [𝑦 ], 𝑙 .ℎ𝑒𝑎𝑑 ) stmtC(𝑑, 𝑖, 𝑖𝑡𝑒𝑟𝑉𝑠, 𝑙𝑏𝑠, 𝑢𝑏𝑠, 𝑙 )
12: Return 𝑙𝑏𝐶𝑢𝑟 𝐴𝑁𝐷 𝑢𝑏𝐶𝑢𝑟 𝐴𝑁𝐷 𝑐𝑈

13: else if 𝑠 : 𝑦 ← 𝑘 𝐴𝑁𝐷 𝑘 is 𝐼𝑛𝑡𝐶𝑜𝑛𝑠𝑡 then
14: Return 𝑁 (𝑦, 𝑖 ) == 𝑘

15: else if 𝑠 : 𝑦 ← 𝑥1 𝑜𝑝 𝑥2 𝐴𝑁𝐷 𝑥1, 𝑥2 are scalars then
16: 𝑐𝑥1 ←

∨
𝑑∈𝐷𝑒𝑓 (𝑥1,𝑠 ) stmtC(𝑑, 𝑖, 𝑙𝑏𝑠, 𝑢𝑏𝑠, 𝑙 )

17: 𝑐𝑥2 ←
∨

𝑑∈𝐷𝑒𝑓 (𝑥2,𝑠 ) stmtC(𝑑, 𝑖, 𝑙𝑏𝑠, 𝑢𝑏𝑠, 𝑙 )
18: Return 𝑁 (𝑦, 𝑖 ) == (𝑁 (𝑥1, 𝑖 ) 𝑜𝑝 𝑁 (𝑥2, 𝑖 ) ) ∧ 𝑐𝑥1 ∧ 𝑐𝑥2
19: procedure depC(𝑤, 𝑟, 𝑙, 𝑖𝑡𝑒𝑟𝑉𝑠, 𝑙𝑏𝑠, 𝑢𝑏𝑠)
20: 𝑐1 ←

∨
𝑑∈𝐷𝑒𝑓 (𝑤.𝑖𝑛𝑑𝑒𝑥, 𝑤.𝑠𝑡𝑚𝑡 ) stmtC(𝑑, 0, ∅, 𝑖𝑡𝑒𝑟𝑉𝑠, 𝑙𝑏𝑠, 𝑢𝑏𝑠, 𝑙 )

21: 𝑐2 ←
∨

𝑑∈𝐷𝑒𝑓 (𝑟 .𝑖𝑛𝑑𝑒𝑥, 𝑟 .𝑠𝑡𝑚𝑡 ) stmtC(𝑑, 1, ∅, 𝑖𝑡𝑒𝑟𝑉𝑠, 𝑙𝑏𝑠, 𝑢𝑏𝑠, 𝑙 )
22: 𝑙𝑐 ← 𝑙 .𝑖𝑡𝑒𝑟 0 ! = 𝑙 .𝑖𝑡𝑒𝑟 1 ⊲ Different iterations of loop
23: 𝑐𝑑𝑒𝑝 ← N(𝑤.𝑖𝑛𝑑𝑒𝑥 ) == N(𝑟 .𝑖𝑛𝑑𝑒𝑥 ) ⊲ The dependence
24: Return 𝑐1 ∧ 𝑐2 ∧ 𝑙𝑐 ∧ 𝑐𝑑𝑒𝑝
25: procedure loopC(𝑎𝑟𝑊𝑟𝑖𝑡𝑒𝑠, 𝑎𝑟𝑅𝑒 𝑓 𝑠, 𝑙, 𝑖𝑡𝑒𝑟𝑉𝑠, 𝑙𝑏𝑠, 𝑢𝑏𝑠)
26: Return

∨
𝑤∈𝑎𝑟𝑊𝑟𝑖𝑡𝑒𝑠

∨
𝑟 ∈𝑎𝑟𝑅𝑒𝑓 𝑠 depC(𝑤, 𝑟, 𝑙, 𝑖𝑡𝑒𝑟𝑉𝑠, 𝑙𝑏𝑠, 𝑢𝑏𝑠 )

Soot provides an built-in purity analysis, but in our preliminary
testing we found it to be inadequate for recent Java versions. Hence
we have written a new interprocedural purity analysis that uses
Soot’s points-to analysis [15] and call-graph construction modules.
Our purity analysis module analyzes the methods called within
canonical for loops for purity. It starts by marking methods that
access static field references as impure. Calls to other methods are
handled using the interprocedural part of the analysis, marking
the caller impure if the callee is impure. For the parameters, any
object reachable from the parameter should not be accessed in-
side the method, else the method would be deemed impure. We
use the points-to analysis provided by Soot, which establishes a
relationship between the variables and the objects they point to,
to get all the objects that are transitively reachable from the ob-
jects pointed to by the parameters. We maintain a list that contains
all the local variables that can point to an external object. This is
done by iteratively updating the list by adding the local variables
that can alias with ones already in the list, and then also adding
the ones that store the fields of external objects. Whenever any
object referenced by a variable from this list is read, it indicates
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read-impurity, whereas if they are written then it indicates write-
impurity. We store these results and use them to determine whether
a function called from within a loop is pure or not. As an example,
after extending the dependence analysis with purity analysis, ZS3
can successfully mark the for loop in Figure 1 as parallelizable.

3 RUNTIME SUPPORT

Performing the analyses shown in Section 2 inside TornadoVM dur-
ing runtime would have simplified actually parallelizing the loop.
However, performance concerns render such sophisticated analy-
ses in Java virtual machines infeasible, which brings in the prob-
lem of communicating the analysis results from static analysis to
TornadoVM. In this section, we describe how ZS3 conveys static
analysis results to TornadoVM, along with the support added in
TornadoVM to use the conveyed results for loop parallelization.

As TornadoVM requires the @Parallel annotation to be placed
above parallelizable for loops in the Java source code and Soot
works with Java class files, the straightforward solution would have
been to insert these annotations in the bytecode itself. We refrained
from using this approach because our analysis and parallelization
are very sensitive to the bytecode indices and the local variable
table generated after static compilation, and there is no one-to-one
correspondence among the same between Java source code and
bytecode. Even a slight change in the instructions while generating
a new class file can be fatal to the program semantics.

A safer solution than the above for communicating the static
analysis results of ZS3 to the TornadoVM runtime is to create a map
𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 : 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 → 𝐿𝑖𝑠𝑡 (𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠). Each annota-
tion consists of the 𝑠𝑡𝑎𝑟𝑡 , 𝑙𝑒𝑛𝑔𝑡ℎ and 𝑠𝑙𝑜𝑡 (in the stack frame) of
the iteration variable of the parallelizable loop, looked up from the
LocalVariableTable in the corresponding Java class file. 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒
denotes the bytecode signature of a Java method. This map is writ-
ten to disk after ZS3 returns and supplied to the VM (see Figure 2).
Following is an example 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 for the code in Figure 4b
with adapted functions f1, f2, f3:
{< 𝐷𝑒𝑝𝑇𝑒𝑠𝑡 : 𝑓 𝑜𝑜 ( [𝐼 )𝑉 >: [𝑠𝑡𝑎𝑟𝑡 : 2, 𝑙𝑒𝑛𝑔𝑡ℎ : 35, 𝑠𝑙𝑜𝑡 : 1]}

When TornadoVM encounters a method call, it reads the exist-
ing @Parallel annotations from the classfile and adds them to
a method-local data structure. We modified TornadoVM to read,
in addition to the annotations in the classfile, the 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝

generated by our static analysis, and extend the data structure main-
tained by TornadoVM by looking up the signature of the called
method in the map. This solution bypasses the need to change the
classfile, and is still able to communicate the results to the runtime.

4 DISCUSSION

In this section, we highlight few subtle aspects of the design deci-
sions made while implementing ZS3, along with a discussion on
the reasoning and the alternatives.

1. Static initializers. ZS3 treats calls made to static initializers
(classinit methods) as impure. We handle static initializers con-
servatively because it is difficult to predict when are they called
during runtime (first reference to a class); marking them impure
should not be an issue because in general they are used to assign
values to static fields, which are essentially shared (global) variables
anyway, thus leading to impurity for the enclosing loop.

2. Annotating class files with static-analysis results. As mentioned
in Section 3, we have chosen to include static-analysis results in
separate files (containing the 𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝), for simplicity. In a
production scenario, the results can be added as annotations in the
class-files themselves, without loss of generality, depending on the
correctness of the support to maintain local-variable offsets in Soot
and ASM. We leave this as a future engineering exercise.

3. Verifying static-analysis results. For an approach that uses
static-analysis results to perform VM-level optimizations without
programmer intervention, one way to assess the precision and
the usefulness would be to validate the results through a parallel-
programming expert. In this paper, we validate the precision and
correctness of ZS3-results by checking whether the loops identified
as parallelizable are a subset of the manually annotated loops by
TornadoVM designers, and the usefulness by measuring the speed-
ups achieved with the parallelized loops (in Section 5). One could
also exportZS3 as an IDE plugin that suggests parallelizable loops to
programmers, who can then either accept or reject the suggestion;
we mark this as an interesting future software-engineering exercise.

5 IMPLEMENTATION AND EVALUATION

We have implemented the four static components of ZS3 (high-
lighted in gray in Figure 2), in the Soot framework version 4.1.0,
over its Jimple intermediate representation, with different modules
implemented independently (thus being candidates for separately
useful artefacts as well). The integration for constraint solving was
done with Z3 theorem prover version 4.8.11. We have added the
runtime-support code to TornadoVM version 0.11 installed along
with JDK 11, and ran our experiments on an 8-core (two threads per
core) 11th Gen Intel Core i5 machine with 8 GB of RAM, bundled
with an Intel Iris Xe Graphics chip, running Arch Linux.

We have evaluated ZS3 on 14 benchmarks from the PolyBench
suite [18], adapted to Java by the TornadoVM team [9] itself. The
parallelizable loops in all these benchmarks are already annotated
with @Parallel constructs, thus providing a baseline for evaluating
the precision and correctness of the loops identified as paralleliz-
able by ZS3. Additionally, we have also evaluated our techniques
on a series of synthetic benchmarks, written specifically to test
individual cases that ZS3 parallelizes, as well as to illustrate cases
that pose challenges for further automatic parallelization. We plan
to release our complete implementation, bundled with all the test-
cases, to the community as open source. ZS3 can not only be used
as a bundle tool to parallelize loops for TornadoVM, but its individ-
ual components (particularly the dependence analysis, the purity
analysis, and the Soot-Z3 integration modules) can separately be
used to develop various other Soot-based program analyses as well.

We now evaluate the impact of ZS3 in supporting loop paral-
lelization for TornadoVM. In particular, the next four subsections
respectively address the following four research questions:
• RQ1. How many of manually parallelized loops are marked as
parallelizable by ZS3?
• RQ2. Are the overheads of static-analysis, those of storing the
𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 , and the time spent in the VM significant?
• RQ3. How good are the speedups of ZS3-marked parallel loops?
• RQ4.What are the challenges yet to be handled by future static-
analysis guided loop parallelizers?
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Name #loops #annot #iden tAnalysis (s) szClassFile (B) szAnnotMap (B) tParallel (ms) tRead (ms)

Convolution2D 2 2 1 1 4527 391 1546.23 7.94
Euler 5 2 1 1 4767 497 191.03 8.22
FDTDSolver 6 6 2 4 7609 886 429.93 7.56
FlatMapExample 2 1 1 1 3815 389 658.05 20.72
GSeidel2D 2 2 0 1 4592 0 59.35 0
HilbertMatrix 2 2 1 1 3218 390 863.65 12.64
Jacobi1D 2 2 2 1 4785 739 418.06 7.06
Jacobi2D 4 4 4 1 5222 758 70.66 4.45
Mandelbrot 3 2 0 1 9186 0 13740.69 0
MatrixMul2D 3 2 2 1 5304 840 50.73 25.99
MatrixTranspose 2 2 2 1 4229 391 1031.58 25.52
Montecarlo 1 1 0 3 3615 0 418.34 0
Saxpy 1 1 1 1 3658 371 842.44 12.41
SGEMMFPGA 3 2 2 1 3835 388 1058.39 13.16
GeoMean 2.30 1.96 - 1.22 4647.22 - 479.48 -

Figure 5: Evaluation metrics. Out of the total number of loops (#loops) and the manually annotated @Parallel loops (#annot),

ZS3 identified loops are shown in the #iden column. tAnalysis denotes the time taken by static analysis in seconds. szClassFile

and szAnnotMap respectively denote the size of the benchmark classes and static-analysis results in bytes. tParallel and tRead

respectively denote the total execution time and run-time overhead of our approach in milliseconds.

5.1 Precision and Correctness

Columns 2, 3 and 4 in Figure 5 show the number of source-code for
loops, the number of loops manually annotated with @Parallel
in the TornadoVM benchmarks, and the number of loops identi-
fied as parallelizable by ZS3, respectively. Each of the benchmarks
contains at least one parallelizable loop, with the maximum num-
ber of parallelizable loops being 6 (for FDTDSolver). Out of the
38 loops across the 14 kernels, 31 of them were found to contain
the @Parallel annotation, whereas ZS3 successfully identified 19
of them to be parallelizable. Thus, across all the benchmarks, ZS3
is able to successfully identify 61.3% of the manually parallelized
loops. Recognizing that this identification is done statically with-
out any manual intervention (and as shown later, with negligible
runtime overhead), we believe that the precision is reasonable.

To validate the correctness of the loops identified by ZS3, we
checked whether the identified loops are a subset of the loops man-
ually annotated with @Parallel, and we found that this was indeed
the case. On synthetic testcases designed to test individual features
of our analysis, we also found few loops marked as parallelizable by
ZS3 that were not so straightforward to be parallelized manually.
This supports our hypothesis that a manual identification of paral-
lelizable constructs is error-prone and imprecise, and consequently
encourages the use of ZS3 for real-world programs and runtimes.

5.2 Time and Space Overheads

ZS3 makes use of sophisticated interprocedural points-to and call-
graph construction analyses, computed dependence information
within loops, purity information about functions, and invokes Z3
from within to check satisfiability of dependence constraints. Per-
forming all of this during runtime (in a Java VM) would not only
be a tremendous engineering effort, but might also be practically
infeasible due to the associated analysis cost. On the other hand,
though performing analyses statically takes care of the complexity
and practicality to a great extent, our approach incurs additional

overhead in terms of conveying the𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 to, and adding
runtime support to read the same in, TornadoVM. We assess the
scale and impact of these overheads next.

Column 5 in Figure 5 shows the total analysis time spent by ZS3,
for all the benchmarks. This includes the time spent by Soot to
construct control-flow- and call-graphs, as well as the time spent by
Z3 in solving the ZS3-generated dependence constraints. We note
that the time spent across different benchmarks varies between 1
and 4 seconds, which is of the same order for different benchmarks
due to the similarity in their size, but we expect it to increase
proportionally with the size of the benchmark. Nevertheless, the
total analysis time is reasonable to be incurred statically (i.e. offline).

Columns 6 and 7 respectively show the size (in bytes) of the
classfiles of various benchmark applications and the size of the
ZS3-generated result files. We observe that the extra space incurred
by our approach to convey precise static-analysis results to Tor-
nadoVM is very small (on an average 500 bytes), which is just 10.2%
of the overall class-file size. This denotes that the results computed
by our static analyses are small enough to be conveyed to the VM
without much overhead. As explained in Section 3, we achieve this
by storing the results in terms of mostly integer values (storing
information in terms of bytecode indices in the class files).

Column 8 shows the total execution time (inmilliseconds) of each
(parallelized) program under consideration. Similarly, column 9
shows the time spent by our modified TornadoVM for reading the
𝐴𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑀𝑎𝑝 and using the results to mark loops as paralleliz-
able. As can be noted, the runtime overhead of our approach is just
a few milliseconds, which is negligible compared to the amount of
time that would have been needed for actually performing sophisti-
cated program analyses in the JVM, as well as to the total execution
time. Also note that ZS3 enables interprocedural-analysis based
loop parallelization irrespective of the tiered VM component trans-
lating the program (interpreter or JIT compiler(s)), whereas even
an imprecise version of such analyses could have been performed
only if the given method was picked up by a JIT compiler.
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Figure 6: Speed-ups in TornadoVM with ZS3.

5.3 Achieved Speed-Ups

The previous sections assert the precision and efficiency of ZS3 for
parallelizing loops. We now assess the impact of loop parallelization
itself, by comparing the execution times of the sequential and the
ZS3-parallelized versions of various benchmarks, on TornadoVM.

Figure 6 shows the speed-ups achieved by the parallel versions
of the benchmarks under consideration. We note that the speed-ups
go up to ∼23x (for MatrixMul2D), and on an average stand at 1.77x.
We also noted slowdowns on few of the benchmarks, specifically
FDTDSolver and MatrixTranspose, and suggest two ways to ad-
dress the same. Firstly, the speed-ups may vary if the programs are
executed on larger datasets and/or on higher-end systems. Second
and more importantly, the slow-downs indicate that not all of the
parallelizable loops are good candidates for parallelization; over-
heads with respect to communication (particularly TornadoVM’s
target being heterogeneous systems consisting of GPUs and FPGAs
that have high communication overheads, apart from CPUs) is an
important factor. We have also observed that the imprecision af-
fects mostly the outer loops (see Section 5.4), thereby increasing
the overall overhead of parallelization when parallelizing inner
loops. We envisage that future studies should adapt the approaches
of Surendran et al. [20] to filter out loops that may not be good
candidates for parallelization, for heterogeneous systems.

5.4 Challenges Towards Further Parallelization

The loops that are not parallelized by ZS3 but can be labelled as
parallelizable manually may be non-exhaustively categorized into
the following two categories.

1. Unknown upper bounds.Multiple loops in our evaluation set are
not parallelizable because of the lack of the value of upper bound of
the iteration variable during static analysis. As the upper bounds of
loops are generally runtime values, the constraints given to the Z3
solver are weaker than they would be at run time. Figure 4c is an
example of such a loop; as the values of 𝑟𝑜𝑤𝑠 and 𝑐𝑜𝑙𝑠 are missing
during the analysis, the solver is able to find a dependence when
𝑗 >= 𝑟𝑜𝑤𝑠 , for 𝑖0 = 0 and 𝑖1 = 1. Hence, the outer loop is not paral-
lelized. In our evaluation, we found that about 83% of imprecision
of ZS3 was due to unknown upper bounds. In future, we plan to
explore how can we generate results in terms of conditions on loop

bounds, and how can they be efficiently resolved during JIT com-
pilation in a JVM, similar to the PYE framework [22]. Approaches
such as the PYE framework [22] handle both these challenges by
generating results conditional on the library methods, and the same
can be incorporated, if deemed suitable for precision and scalability,
by integrating ZS3 into the same.

2. Library function calls. Even though we account for purity of
function calls during analysis in ZS3, library functions are marked
(conservatively) as impure. This means not parallelizing all such
loops which even contain functions like sqrt; ZS3 failed to paral-
lelize Montecarlo because of this reason. We treated library func-
tions as impure due to two reasons: First and more important, in
a real-world scenario, the JDK installation on the target machine
may be different from that available for static analysis, which may
lead to invalidity of statically generated results. Second, including
library calls in the analysis blows up the size of Soot’s call graph
(due to its imprecision), thus making the analysis unsuitable for
general-purpose machines with moderate compute capabilities.

6 RELATEDWORK

Automating loop parallelization for achieving performance onmulti-
core (and recently, heterogeneous) systems has been studied for
long [2], and its optimality for even simple loops has been proved
to be undecidable [10]. In this section, we primarily focus on related
works that propose significant advancements in performing (loop)
parallelization using dependence and/or purity analysis.

The precision of finding and solving dependence constraints
directly affects the amount of parallelization, and hence several
dependence analysis algorithms have been proposed. Partition-
based merging implemented in Parascope [7] works by separating
arrays into separable minimally coupled groups. Merging direction
vectors [1] is a common dependence analysis algorithm used by
tools such as Automatic Code Parallelizer [16]. Symbolic test and
Banerjee-GCD test [4] are used to detect data dependence among
array references by assuming the loop in normal form and the
loop indices to be affine functions. TornadoVM in itself does not
use dependence analyses, due to the overhead of performing these
checks during program execution. Our dependence analysis is based
on Z3, does not require indices to be affine (is able to solve non-
linear arithmetic), and most interestingly is performed statically
(that is, without incurring any analysis or satisfaction overheads
during program execution in the JVM).

Constraint solvers such as Z3 have been extensively used for
verification of programs. Bounded model checking [5] is a popular
way of finding bugs in programs. Satisfiability modulo theory has
been extended for verification of higher-order programs [6], and
multi-threaded program verification [12]. Constraint satisfiability
based techniques have also been used for quantification of infor-
mation flow in imperative programs using a SAT-based QIF [14].
On the other hand, Pugh and Wonnacott [19] were among the first
to propose the usage of constraint-solving for dependence analysis.
Inspired by these prior works, in this work, we feed the constraints
identified by our dependence analysis written in Soot to the Z3
solver, and marked loops for parallelization where the dependence
constraints are satisfied. To the best of our knowledge, ours is the
first approach that integrates Soot with Z3 for this purpose.
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Purity analysis [3] identifies side-effect free functions, and is
imperative for parallelization of otherwise dependence-free loops
consisting of calls to functions that may be impure. Süß et al. pro-
pose a C extension [21] that marks pure function calls to support
parallelization of polyhedral loops. ZS3 implements a stand-alone
purity analysis component (which works for recent versions of
Java, unlike prior implementations in Soot), and hence naturally
supports programs containing function calls inside Java for loops.

There have been few works that discuss loop parallelization for
managed runtimes. Zhao et al. [25] support our claim that per-
forming analyses for parallelization during runtime is expensive,
and use a conservative GCD test as compared to our constraint-
solver based dependence analysis [24] for the Jikes RVM. Similarly,
few prior works have proposed dependence analysis based loop
parallelization with hybrid static+dynamic strategies. Oancea and
Rauchwerger [17] use runtime information to improve the per-
formance of static dependence analysis for FORTRAN. Recently,
Jacob et al. [13] used staged dependence analysis while parallelizing
Python loops on GPUs, to determine loop bounds and variable types
that cannot be determined statically (Python being a dynamically
typed language). Thakur and Nandivada [22], though for a differ-
ent set of analyses, propose a static+JIT approach that statically
encodes dependencies between Java application and libraries and
resolves them during JIT compilation. Our approach facilitates loop
parallelization on a dynamic Java runtime, by offloading complex
program analyses to static time, and can be extended using such
hybrid strategies to improve the precision further.

7 CONCLUSION

Loop parallelization, though one of the most promising ways to
speed-up programs on multicore and heterogeneous systems, re-
quires performing several expensive analyses for automation. For
a language like Java, where most of the program analysis hap-
pens during just-in-time compilation in a VM (thus affecting the
execution-time of programs directly), performing such analyses for
loop parallelization not only presents several challenges in terms
of integrating program analyses with constraint solvers, but may
often also be prohibitively expensive. In this paper, we proposed
an approach that solves this problem by performing the required
analyses statically, and conveying the obtained results to a recent
JVM that parallelizes loops for heterogeneous architectures. Our
solution involved generating dependence constraints from Java
bytecode, feeding them to a constraint solver, supporting calls to
pure functions, generating results in a form that is valid in the Java
runtime, and modifying the VM to support static-analysis guided
parallelization. Our exposition describes the design decisions and
implementation challenges along with our novel solutions in de-
tail, and our tool ZS3 is composed of several modules that can
additionally be used for performing more such analyses in future.
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