=PiL

Decentralized Learning Made Easy With

DecentralizePy

Akash Dhasade Anne-Marie Kermarrec Rafael Pires Rishi Sharma Milos Vujasinovic

Scalable Computing Systems Laboratory
EPFL

08.05.2023

EPFL DecentralizePy 2

A framework for designing and studying decentralized learning systems.

Rapid development Scalability

u3

Federated Server

uz

EPFL Federated learning

» Model sharing

EPFL S0 many frameworks... e

Machine Learning As A Service (MLaaS) for AloT, Healthcare, FinTech, Tokenomice e Al T R
Precision Medicine, BioTech, Retal Solution, Logistics, Transportation/Au- e
tonomous Driving, Energy, Gas/Oil, Manufacturing, Generative Al

“edScale

A scalable and extensible federated learning engine and benchmark

RTED
- Open and Collaborative MLOps for Al Anywhere at Any Scale
Close the gap between training and serving

Train on the Edge Train on the cloud Serve Anywhere Observal

Continual Improvement

FedScale is a scalable and extensible open-source federated learning (FL) ‘ Tr'aining ‘ ’ Tuning ‘ I Testing ‘ ‘ Analytics ‘ .. & p ﬁQ

Edge-cloud collaboration

engine. It provides high-level APIs to implement FL algorithms, deploy and
Data collaboration Computation collaboration Model collaboration
evaluate them at scale across diverse hardware and software backends. - - T ey | [Eoee | | Sl
FedScale also includes the largest FL. benchmark that contains FL tasks ector
i arning with refinement (Ref ing or fine-tuning)

ranging from image classification and object detection to language modeling _ -edSCO Ie Orchestrator

and speech recognition. Moreover, it includes datasets to faithfully emulate
=nvironments where FL solutions will realistically be deployed. - Aggregator +* FedML
FedNL Unifiod and Scalable Distributed Computing Framework
for Machine Learning Anywher at Any Scale

We are actively developing FedScale, and welcome contributions fror

community. Join our slack to keep up to date. TensorFlow Federated: Machine Learning on Decentralized Data @ @

FL runtime

2 Flower

- TensorFlow Federated (TFF) is an open-source framework for machine learning and other computations on
ram > import tensorflow as t|
decentralized data. TFF has been developed to facilitate open research and experimentation with Federated £ £
Learning (FL) [, an approach to machine learning where a shared global model is trained across many LT DAL
participating clients that keep their training data locally. For example, FL has been used to train prediction
Load simulation data

[]
A F rlen models for mobile keyboards (5 without uploading sensitive typing data to servers.
source, _ = tff.simulation.datasets.emnist.load_data()
def client_data(n):

TFF enables developers to simulate the included federated learning algorithms on their models and data, as
return source.create_tf_dataset_for_client(source.client_ids[n]).map(

Federated well as to experiment with novel algorithms. Researchers will find starting points and complete examples
for many kinds of research. The building blocks provided by TFF can also be used to implement non- lambda e: (tf.reshape(e['pixels'], [-1]), e['label’])
).repeat(10) .batch(26)

learning computations, such as federated analytics. TFF's interfaces are organized in two main layers:

[]
Learning et et s e e
N Federated Learning (FL) API train_data = [client_data(n) for n in range(3)]

This layer offers a set of high-level interfaces that allow developers to apply the included

Framework implementations of federated training and evaluation to their existing TensorFlow models. # Wrap a Keras model for use with TFF
def model_fn():

model = tf.keras.models.Sequential([
tf.keras.layers.Dense(16, tf.nn.softmax, input_shape=(784,),

Flower Next Pilot

A unified approach to federated learning, S Federated Core (FC) API
analytics, and evaluation. Federate any workload, At the core of the system is a set of lower-level interfaces for concisely expressing novel federated kernel_initializer='zeros')
any ML framework. and any programming language algorithms by combining TensorFlow with distributed operators within a strongly-typed
v . y prog g guage. functional programming environment, This layer also serves as the foundation upon which we've built return tff.learning.models. from_keras_model(
model,

Federated Learning.
input_spec=train_data[@] .element_spec,

loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])

Take the tutorial

TFF enables developers to declaratively express federated computations, so they could be deployed to
diverse runtime environments. Included with TFF is a performant multi-machine simulation runtime for
experiments. Please visit the tutorials and try it out yourself!

Simulate a few rounds of training with the selected client devices.
For questions and support, find us at the tensorflow-federated tag on StackOverflow. ”31391 ; tff.learning.algorithns.build weighted_fed_avg(
model_fn,
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(0.1))
state = trainer.initialize()
for _ in range(5):

EPFL Decentralized learning

Train — Send I Receive — Aggregate

EPFL Decentralized learning

Simulations + No Re-usability!

2PFL Building decentralized learning systems ’

Topology Communication Compression

Roles Models Datasets

flaticon.com / freecodecamp.org / studiousguy.org

https://www.flaticon.com/free-icons/resilience
https://www.freecodecamp.org/news/deep-dive-into-graph-traversals-227a90c6a261/
https://studiousguy.com/organizational-design-structure/

=PFL DecentralizePy Modules 8

flaticon.com / freecodecamp.org / studiousguy.org

https://www.flaticon.com/free-icons/resilience
https://www.freecodecamp.org/news/deep-dive-into-graph-traversals-227a90c6a261/
https://studiousguy.com/organizational-design-structure/

EPFL As easy as ABC ...

1 from decentralizepy.node.Node import Node

2

3 class DLNode(Node):

4 def run(self, iterations, training, dataset,
sharing, graph, communication):

5 for round in range(iterations):

6 training.train(dataset)

7 msg = sharing.get_message()

8 neighbors = graph.get_neighbors()

9 communication.send(neighbors, msg)

10 rcv = communication.receive_from_all()
11 sharing.average(rcv)

12 dataset.test()

DecentralizePy already contains reference implementations of well-
. known algorithms.

1 from decentralizepy.node.Node import Node
2
3 class DLNode(Node):
4 def run(self, iterations, training, dataset
sharing, graph, communication):
for round in range(iterations):
training.train(dataset)
msg = sharing.get_message()
neighbors = graph.get_neighbors()
communication. send(neighbors, msg;
rev = communication. receive_from_all()
sharing.average(rcv)
dataset. test()

from decentralizepy.node.Node import Node

class DLNode(Node):
def run(self, iterations, training, dataset
sharing, graph, communication):
for round in range(iterations):
training. train(dataset)
msg = sharing.get_message()
neighbors = graph.get_neighbors()
communication. send(neighbors, msg;
rev = communication. receive_from_all()
sharing.average(rcv)
dataset. test()

=PFL Development Phase: Single machine

1 from decentralizepy.node.Node import Node
2
3 class DLNode(Node):
4 def run(self, iterations, training, dataset
sharing, graph, communication):
for round in range(iterations):
training.train(dataset)
msg = sharing.get_message()
neighbors = graph.get_neighbors()
communication. send(neighbors, msg
rev = communication. receive_from_all()
sharing.average(rev)
dataset. test()

from decentralizepy.node.Node import Node

class DLNode(Node):
def run(self, iterations, training, dataset

sharing, graph, communication):

for round in range(iterations):
training. train(dataset)
msg = sharing.get_message()
neighbors = graph.get_neighbors()
communication. send(neighbors, msg
rev = communication. receive_from_all()
sharing.average(rcv)
dataset. test()

10

1

£PFL Real-world deployment

1 fra dacantralizepy. o Mo inport o

F run(selr, sterations, trainin
>

rom dacantralizey.node e irport Hode

+ Ounade e

ot runCeel, sterstions, trsinin, datsse,
Snaring, grioh, comaication
for rowe in romgeCitarationa

Lessagel)
eighbors = £ gt pesERor s
Comunication sendCrepbors, 136)

einin. train(sstazer)

Do)

rev = comunication.receive.fronallC)
i, averagecren)
stsset test)

e e

FunCsel, Starseions,
. §rioh, commication
seicns)

R T——

rom sacentralizey.node o irport Node

+ class Ddodelod

et runcslt, terations, traiaing, dotaset

v comication

exCiterseions).

training. train(@ntaset)
i, get_nessage)
et reigrbors)

Comunication send(oors, w36)
comunication. receive.Aron 110

Shoring average(ren)
s

=PrL

We use DecentralizePy as a catalyst for DL research 1n our lab.

12

=PrL Experimental Setup

4 CIFAR-10 (Non-IID) with GN-LeNet
4 256 and 1024 DL nodes

4 Emulation on 16 machines

4+ D-PSGD with Metropolis Hastings

14

=PFL Topologies

(256-nodes)

- Ring «weeeeeees 5-Regular Fully connected = - - - Dynamic 5-Regular
Vet 13 13
= o S | E O =9 4/
z 2.8 % 12 8 3 2
oV
8 40 LS & 40 LS 8 40 7. .
2 | %3 5 A
g &g 1&g £
d‘q”: 20 g 20 -*g 20 *
= = =
0 T T T T T 0 0 T T T T T T 0 0 \% \% \% \% T
0 1 2 .3 .0 1 32 3 0 1 2 3 .0 . 1 2 3 S@ S@ Q\'x Q\} Q\’&
Communication round (x 10%) Emulation time [h] NS N \QQ
Cumul. commun. per node (log scale)
(@ (b) (©

Information spreads faster through the network with dynamic topologies.

=PFL Topologies

1 from decentralizepy.node.Node import Node

2

3 class DLNode(Node):

4 def run(self, iterations, training, dataset,
sharing, graph, communication):

5 for round in range(iterations):

6 training.train(dataset)

7 msg = sharing.get_message

9 communication.send(nheighbors, msg

10 rcv = communication.receive_from_all()
11 sharing.average(rcv)

12 dataset.test()

£PFL - Communication Compression

(256-nodes)
---------- Random sampling 10% ——— Choco 10% === Full sharing

XX

> 40|

QO

s

>

|}

& 20|

@

&

0

I I I
10 MiB 100 MiB 1GiB

Cumulative communication per node (log scale)

The loss of information due to compression dramatically affects the
convergence in non-IID settings at scale.

16

£PFL - Communication Compression

1 from decentralizepy.node.Node import Node

2
3

O 00 I N G

10
11
12

class DLNode(Node):
def run(self, iterations, training, dataset,
sharing, graph, communication):
for round in range(iterations):

training.train(dataset

neighbors = graph.ge
communication.send(neighbors, msg)
rcv = communication.receive_from_all()

sharing.average(rcv)

dataset. tes

17

EPFL DecentralizePy is rapidly evolving

4 Open source
4+ Already being used for a number of projects

4 Adding new algorithms

18

https://github.com/sacs-epfl/decentralizepy
https://github.com/sacs-epfl/decentralizepy

EPFL DecentralizePy is rapidly evolving

& sacs-epfl / decentralizepy Public

<> Code (Issues {1 Pullrequests () Actions [Projects [Wiki (© Security [~ Insights 52 Settings

¥ main v P 1branch ©0tags Gotofile Add file ~

% rishi-s8 Add script to generate graph 8ae8221 4 hours ago {9 192 commits
W eval Add dataset download | Update tutorial 20 hours ago
W src/decentralizepy Add script to generate graph 4 hours ago
M tutorial Add script to generate graph 4 hours ago
O gitignore Add dataset download | Update tutorial 20 hours ago
[.isort.cfg Initial Commit 2 years ago
[LICENSE Add license 3 months ago
[README.rst Add script to generate graph 4 hours ago
[download_dataset.py Add dataset download | Update tutorial 20 hours ago
[generate_graph.py Add script to generate graph 4 hours ago
[install_nMachines.sh 6 machine, move to eval 2 years ago
O pyproject.tom! Initial Commit 2 years ago
[requirements.txt Initial Commit 2 years ago
[setup.cfg Add peer sampler, refactor everything 10 months ago
O setup.py Modify Data and Dataset, add barebone Node, structure config.ini 2 years ago
[split_into_files.py Reddit last year
= README.rst Vi

=PrL

decentralizepy

decentralizepy is a framework for running distributed applications (particularly ML) on top of arbitrary topologies
(decentralized, federated, parameter server). It was primarily conceived for assessing scientific ideas on several
aspects of distributed learning (communication efficiency, privacy, data heterogeneity etc.).

©Watch 0 v ¥ Fork 2~ Starred 8

Contributors 4
‘D- rishi-s8 Rishi Sharma
' rafaelppires Rafael Pires

sissiki Elisabeth Kirsten

& Mvuias Milos Vujasinovic

Languages

® Python 88.2% Shell 11.8%

Please try DecentralizePy if you are working with DL and help us improve the framework.

19

=PFL Go Decentralized!

https://github.com/sacs-epfl/decentralizepy
https://github.com/sacs-epfl/decentralizepy

