Can we run in parallel?
Automating Loop Parallelization for TornadoVM

Shreyansh Kulshreshtha
IIT Mandi, India
shreyanshkuls@outlook.com

Abstract

In recent times, the performance of single-core processors
has almost stagnated, attributed primarily to the technical
difficulties imposed by working on micro scales and the
power wall problem. Nevertheless, the overall computational
performance is still improving every year, thanks to the
advent of multi-processor systems, which range from multi-
core CPUs to heterogeneous GPUs to highly customizable
FPGAs. To get the best out of these hardware units, however,
we need to keep all the units busy. If some units are idle, while
others are computing, we are wasting computing potential
and time. To prevent this wastage and increase the utilization
of the available computing power, we run chunks of the
program across different processing units simultaneously,
resulting in parallelization.

Parallelization enables programs to run much faster than
their unparallelized versions. However, owing to the over-
head of parallelization, it is usually important to parallelize
those portions of code that take the most time (i.e., loops).
In general, we divide the iterations of loops into chunks
and run them simultaneously. But a fair amount of analy-
sis is required to make sure that the parallel program will
run correctly and consistently. Furthermore, actually writing
parallel code needs quite a bit of expertise in parallel pro-
gramming and sometimes in architecture-specific constructs,
something which most scientific programmers do not pos-
sess. This problem is tackled by TornadoVM [2], a Java accel-
erator plugin for OpenJDK, that with the programmers’ aid
can parallelize a piece of a Java program and automatically
run it on heterogeneous hardware. TornadoVM currently
supports parallelization of for loops, which can be enabled
programmatically by inserting @Parallel annotations at
appropriate places, as can be seen in Figure 1.

1 for (@Parallel int i = @; i < n; ++i) {
2 // Do something
3}

Figure 1. Placement of @Parallel annotation.

Parallelizing loops, although being a potentially power-
ful technique to execute a program much faster, in general
cannot be used for every loop present in the program. If a
loop contains loop-level dependences, parallelizing it could
lead to incorrect results. As an example, Figure 2 shows a

Rishi Sharma
IIT Mandi, India
rishi-sharma@outlook.com

Manas Thakur
IIT Mandji, India
manas@iitmandi.ac.in

code where each iteration of the loop swaps adjacent ar-
ray elements by using a local temporary variable temp. The
write to ar[i] from iteration i and the read of ar[i-1] from
iteration i+1 on line 5 represent the read-after-write depen-
dence. Similarly, the writes to ar[i] on line 5 from iteration
i and ar[i-1] on line 6 from iteration i+1 represent the
write-after-write dependence. Since the memory location is
mutated in each iteration, these can lead to incorrect results
if the iterations are run in parallel.

1 public void swap(int[] ar) {

2 int n = ar.length;

3 for(int 1 = @; i < n; i++) {
4 int temp = ar[il;

5 ar[i] = ar[i-1];

6 ar[i-1] = temp;

7
8

3
Figure 2. Code to swap adjacent array elements.

When an annotated program is passed to TornadoVM,
it does not perform any checks to ensure that the marked
loops are parallelizable and assumes that the programmer
has inserted the annotations correctly. Since it is not an easy
task for a general programmer to understand loop-level de-
pendence and side-effects in large codebases, we present
to you a tool called AutoTornado. As the name suggests,
AutoTornado automatically identifies the loops that can
be parallelized and passes this information to TornadoVM,
which in turn parallelizes the appropriate loops. Analyses in
AutoTornado are written using Soot [3], a Java optimizing
framework, the best-in-class analysis tool for Java.

Java —_—
Source Code Sool
(Without ‘ AnnotationMap
@ Parallel) J

] / Run and \".

tornado

g I J_'* \\ Pa!alieIiZE/'

R

AumT;madD
- g
Figure 3. Workflow of AutoTornado.

An overview of the workflow can be seen in Figure 3.
The Java bytecode of the unannotated program is first read
by our tool AutoTornado, which identifies for loops and
performs dependence analysis. For each function, it adds the

annotations of the parallelizable loops inside it in an object
file AnnotationMap. We have modified TornadoVM to read
annotations from AnnotationMap in addition to the ones
present in the original Java bytecode. So after the analyses,
our tool automatically invokes TornadoVM which runs the
program with parallelized loops.

. Dependence
Analysis

Identify
+ parallelizable
loops

Loop
Identification

AnnotationMap

Z3

AutoTormado

Figure 4. Architecture of AutoTornado.

AutoTornado comprises of three parts (see Figure 4): (i)
identifying supported loops, (ii) dependence analysis, and
(iii) writing information to AnnotationMap, all written in
Soot. The first component identifies canonical for loops in
the program that are supported by TornadoVM. The second
component then performs dependence analysis on the iden-
tified loops, using the Z3 Theorem Prover [1], which we
have integrated with Soot, to solve dependences across array
indexes. Using this information, the third component classi-
fies loops as parallelizable or non-parallelizable and writes
this information to an object file AnnotationMap. This file
is then used by our modified TornadoVM to parallelize the
marked loops during runtime.

Dependence analysis works over the Loop-level depen-
dence, which can occur over different kinds of memory ac-
cesses including scalar variables, object field references, and
array references. The first step in this analysis is to identify
the variables which are local to the loop as these can be
allocated on the stack of the thread in which the iteration is
running, whereas, a variable declared outside the loop may
be shared among threads. As opposed to Java source code,
Java bytecode does not have scopes which makes it harder to
differentiate between variables declared inside and outside
the loop. So to discriminate between the two, we work with
liveness analysis and graph-reachability on the control-flow
graph using def-use chains.

If the scalar and field variables that are not local to the loop
are written to in any iteration, the loop has a dependence.
Array references are more interesting as the run-time values
of the array indices can sometimes be not available during
static analysis. To avoid any dependences, for each writes to
a location in an array, we want to make sure that the same lo-
cation in the array is not accessed in a different iteration. For
this, we use Z3 Theorem Prover to find a solution to the ar-
ray dependence problem modeled as a Satisfiability Problem,
which can be formulated as follows: "Is there a satisfying
assignment for variables under the given constraints, such
that the index can be the same for two different iterations?"

1 public void foo(int ar[]) {

2 for(int i=0; i<10000; i++) {
3 int k1 = f1(i);

4 int k2 = f2(i, k1);

5 int k3 = f3(i, k2);

6 ar[k3] = k2;

7 3

8}

Figure 5. Code to demonstrate logic constraints.

As an example, Figure 5 shows a simple loop given to
the program for dependence analysis. The scalar analysis
marks k1, k2 and k3 as locally-scoped. Here, f1, f2 and f3
can be one of the supported operators, as mentioned above.
The constraints in equation (1) are generated for the array
reference at line 6 for two separate iterations represented by
the superscript. If the solver returns unsatisfiable then
there are no dependences in the loop.

(k3" == f3(i% k2")) A (k2" == f2(i* k1*))A
(k1" == f1(i*)) A (i* = 0) A (i < 10000)A
(k3% == f3(i% k2°)) A (k2° == f2(i° k1°))A
(k1° == f1(i")) A (i° = 0) A (i° < 10000) A
(" #i%) A (k3" ==k3°) (1)
We tested AutoTornado over comprehensive synthetic tests

that examine its correctness in varying cases of dependence
contexts. The results of the tests can be seen in Table 1.

Parallelizable | Not Parallelizable

Total Tests 25 7
Precise & Correct 14 (56%) 7 (100%)
Unsound 0 0

Table 1. Precision and soundness of different test cases.

Our program analysis is sound, but incomplete. The same
is evident from the tests. Most of the conservative behavior
is from the scalar analysis, due to the problem of scope.

To conclude, our tool to identify AutoTornado loop-carried
dependences, including dependences over stack variables,
objects, as well as over array references. Most of the loops
that are marked not parallelizable conservatively come from
the scalar analysis. In future, we plan to work on improving
the precision of the scalar analysis, which would directly
improve the precision of the dependence analysis. We also
plan to handle function calls inside loops.

Keywords: TornadoVM, Dependence Analysis, Static Anal-
ysis, Program Analysis, Soot, Z3, Parallelism

References [2] Juan Fumero. 2020. TornadoVM: Accelerating Java with GPUs and

[1] Leonardo De Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT FPGAs. (2020). https://www.infoq.com/articles/tornadovm-java-gpu-
Solver. In Proceedings of the Theory and Practice of Software, 14th In- fpga/ i))))
ternational Conference on Tools and Algorithms for the Construction (3] Raja Vallee‘-.Ral, Phong Co, Etienne Gagnon, Laurie Hendrer}, P atr}ck
and Analysis of Systems (Budapest, Hungary) (TACAS’08/ETAPS’03). Lam, and Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization

Framework. In Proceedings of the 1999 Conference of the Centre for Ad-
vanced Studies on Collaborative Research (Mississauga, Ontario, Canada)
(CASCON *99). IBM Press.

Springer-Verlag, Berlin, Heidelberg, 337-340.

https://www.infoq.com/articles/tornadovm-java-gpu-fpga/
https://www.infoq.com/articles/tornadovm-java-gpu-fpga/

	Abstract
	References

