

Noiseless Privacy-Preserving Decentralized Learning*

* To appear in the Proceedings on Privacy Enhancing Technologies (PoPETS) 2025

Sayan Biswas[†], Mathieu Even[‡], Anne-Marie Kermarrec[†], Laurent Massoulié[‡], Rafael Pires[†], Rishi Sharma[†], Martijn de Vos[†] *†* SaCS Lab, EPFL, Switzerland. *‡* Inria, DI ENS, PSL University, France. Correspondence: <first name>.<last name>@epfl.ch

Motivation

- DL is becoming popular as it addresses several issues (*e.g.*, single point of failure, scalability) that centralized ML or FL are prone to
- Widely used DL algorithms like decentralized parallel SGD [1], gossip learning [2], and epidemic *learning* [3] are vulnerable to privacy violations through the sharing of model updates
- Noise-based privacy-preserving methods significantly affect model utility
- We propose SHATTER that addresses DL's privacy concerns without compromising utility or efficiency

System Design

Threat Model: • Permissioned network • HbC local adversaries • No collusion

Building blocks:

- *Chunking*: restricts receiving nodes' access to a subset of model parameters (\uparrow privacy)
- *Full sharing*: ensures no information loss occurs († utility)
- *Virtualization*: decouples nodes' identities from model chunks by means of *virtual nodes* (↑ privacy)
- Randomized communication: prevents structural attacks on fixed nodes († privacy) and improves mixing (\uparrow utility)

SHATTER

SHATTER from the perspective of an arbitrary real node N_i :

• Initialize $\theta_i^{(0)}$ and spawn k virtual nodes (VNs): $v_i(1), \ldots v_i(k)$

- For t = 0, ..., T 1:
- $- ilde{ heta}_{i}^{(t,0)} \leftarrow heta_{i}^{(t)}$
- -Local training: for h = 1, ..., H: $\tilde{\theta}_i^{(t,h+1)} \leftarrow \tilde{\theta}_i^{(t,h)} \eta \nabla f_i(\tilde{\theta}_i^{(t,h)}, \xi_i)$
- **Chunk** $\tilde{\theta}_i^{(t,H)}$ into k parts
- Forward chunk s to $v_i(s)$ for every s = 1, ..., k
- Randomize *r*-regular communication topology
- **Receive** *r* chunks from each of the *k* VNs
- Aggregate the received chunks to produce $\theta_i^{(t+1)}$

• Return $\theta_i^{(T)}$

1. Privacy guarantees:

• Defends better against the cutting edge likability, membership inference, and gradient inversion attacks than the SOTA baselines such as EL [3] and MUFFLIATO [4]

Properties

- Improves the privacy of RNs from an information-theoretical perspective as the number of VNs operated by them increases, offering an analytical insight into the diminishing efficacy of the attacks
- The formal privacy guarantees can be extended even when there are colluding HbC adversaries

2. Convergence:

• Provably converges where the convergence rate involves regularity of local loss functions, number of local steps, number of VNs per RN, and the degree of communication graph

3. Supports dropouts

• Continues to have better privacy and accuracy than its competitors even when nodes drop out at different

rates during each round

Evaluation

Experimental setting: • Task: Image Classification • Dataset: CIFAR-10 • Model: ResNet-18 • Training samples: 50k • Testing samples: 10k • 100 RNs • non-IID samples using Dirichlet distribution with $\alpha = 0$

Test accuracy (a, \uparrow is better), MIA AUC (b, \downarrow is better), attack success rate for LA (c, \downarrow is better) on CIFAR-10, and GIA LPIPS score (d, \uparrow is better) on ImageNet for an increasing number of VNs (k)

[2] Róbert Ormándi, István Hegedűs, and Márk Jelasity. "Gossip learning with linear models on fully distributed data". In: Concurrency and Computation: Practice and Experience 25.4 (2013), pp. 556–571. DOI: 10.1002/cpe.2858. [3] Martijn de Vos et al. "Epidemic Learning: Boosting Decentralized Learning with Randomized Communication". In: NeurIPS. 2023. arXiv: 2310.01972. [4] Edwige Cyffers et al. "Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging". In: NeurIPS. 2022. arXiv: 2206.05091.

Faculty: Prof. Anne-Marie Kermarrec