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Motivation

• DL is becoming popular as it addresses several issues (e.g., single point of failure, scalability) that
centralized ML or FL are prone to

• Widely used DL algorithms like decentralized parallel SGD [1], gossip learning [2], and epidemic
learning [3] are vulnerable to privacy violations through the sharing of model updates

• Noise-based privacy-preserving methods significantly affect model utility

• We propose SHATTER that addresses DL’s privacy concerns without compromising utility or efficiency

System Design

Threat Model: • Permissioned network • HbC local adversaries • No collusion

Building blocks:

• Chunking: restricts receiving nodes’ access to a subset of model parameters (↑ privacy)

• Full sharing: ensures no information loss occurs (↑ utility)

• Virtualization: decouples nodes’ identities from model chunks by means of virtual nodes (↑ privacy)

• Randomized communication: prevents structural attacks on fixed nodes (↑ privacy) and improves
mixing (↑ utility)
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SHATTER from the perspective of an arbitrary real node Ni:
• Initialize θ

(0)
i and spawn k virtual nodes (VNs): vi(1), . . .vi(k)

• For t = 0, . . . ,T −1:

– θ̃
(t,0)
i ← θ

(t)
i

– Local training: for h = 1, . . . ,H: θ̃
(t,h+1)
i ← θ̃

(t,h)
i −η∇ fi(θ̃

(t,h)
i ,ξi)

– Chunk θ̃
(t,H)
i into k parts

– Forward chunk s to vi(s) for every s = 1, . . .k
– Randomize r-regular communication topology
– Receive r chunks from each of the k VNs
– Aggregate the received chunks to produce θ

(t+1)
i

• Return θ
(T )
i

Properties
1. Privacy guarantees:

• Defends better against the cutting edge likability, membership inference, and gradient inversion attacks
than the SOTA baselines such as EL [3] and MUFFLIATO [4]

• Improves the privacy of RNs from an information-theoretical perspective as the number of VNs operated
by them increases, offering an analytical insight into the diminishing efficacy of the attacks

• The formal privacy guarantees can be extended even when there are colluding HbC adversaries

2. Convergence:

• Provably converges where the convergence rate involves regularity of local loss functions, number of
local steps, number of VNs per RN, and the degree of communication graph

3. Supports dropouts

• Continues to have better privacy and accuracy than its competitors even when nodes drop out at different
rates during each round

Evaluation

Experimental setting: • Task: Image Classification • Dataset: CIFAR-10 • Model: ResNet-18 • Training samples: 50k • Testing samples: 10k • 100 RNs • non-IID samples using Dirichlet distribution with α = 0
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(d) Gradient Inversion

Test accuracy (a, ↑ is better), MIA AUC (b, ↓ is better), attack success rate for LA (c, ↓ is better) on CIFAR-10, and GIA LPIPS score (d, ↑ is better) on ImageNet for an increasing number of VNs (k)
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LPIPS
Score 0.266 0.422 0.662 0.781 0.815

Reconstructed images using GIA for different numbers of VNs and the avg. LPIPS scores (↑ is better) for all
the 1600 reconstructed images for each setting
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• These are some of the selected illustrations from the extensive set of experiments that were performed

• Experiments with Twitter Sent-140 (task: sentiment analysis) and MovieLens (task: recommendation)
datasets show similar trends w.r.t. accuracy and privacy

• In summary, SHATTER takes a pioneering step towards privacy-preserving DL without compromising utility
under a marginal communication and operational overhead
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